Www.WorldHistory.Biz
Login *:
Password *:
     Register

 

17-07-2015, 08:50

Raw Materials and Tool-Blank Production

Close similarities exist between certain aspects of acquisition and processing osseous and lithic raw materials. Both may be collected in an opportunistic manner during the course of other activities such as foraging, hunting, or herding, and cached ahead of actual use. This kind of scheduling has been inferred from the concentrations of red deer antler found at the Early Mesolithic site of Star Carr in northern England.

Preproduction exposure to fire can affect the mechanical character of stone and help with its working into a tool. Incidental heat treatment of bone as part of the cooking process also alters its responsive qualities through the loss of moisture and organic (collagen) constituents. The extent to which these changes influence the selection of skeletal fragments for tool manufacture is an area that requires further research; however, preproduction work, including the soaking of antler to make it more plastic and workable for tool making, is well known from ethnographic sources and experimentation.

As with lithics, acquiring a tool blank is often an extractive process. Osseous implements may begin life as fortuitously fractured pieces of bone broken during processing of the carcass before or through consumption, for example, as a consequence of marrow extraction. Alternatively, this initial stage may be more targeted and deliberate: from the ‘quarrying’ of simple cortical flakes from the dense sections of cortical bone in a manner reminiscent to flake removals for stone tool production, to more elaborate preparatory steps. One of the most well known of these involves using a special lithic tool (a burin) to remove long parallel sections of cortical bone or more commonly antler or ivory, such as is seen at the Upper Paleolithic sites in Europe and the Central Russian Plain, through what is called the ‘groove and splinter’ technique.

A second method, used chiefly on bone or antler, involves cutting around the circumference of the element. This usually takes place close to one or both ends of the element so that the diaphysis can be used as a source of material or as a tool in itself. While it is possible to cut cleanly through a piece using this method, frequently just enough is done simply to control fracturing and the bone or antler is broken by force. As a result, this is called the ‘groove and snap’ technique.

There are, however, divergent as well as convergent characteristics between lithic and osseous technologies. Whereas access to usable or favored resources may be affected by variables such as distance, transportation, and even weather conditions in both instances, stone is by and large a stationary resource; osseous raw materials by contrast will, in all cases where living animals are the starting point, have their own patterns of mobility. The behavior of groups (e. g., migration) and individual animals introduces an element of unpredictability and reliance on the skills of the hunter to successfully locate, stalk or trap, and ultimately kill the animal. Whereas the procurement of lithics (be it opportunistic or targeted) must be incorporated into other daily activities, the reward for meeting this unpredictability is that potential raw materials are guaranteed at the end of every successful hunt. Allowing for interspecies differences, osseous raw materials will also always occur in identically shaped packages. Where predictability is lost in the initial phase of acquisition, it is gained through redundancy in the form of what is acquired. However, skeletal elements are functional parts of a body structure that facilitate locomotion, provide protection to internal soft tissues or form part of a feeding apparatus. This places certain limits on how osseous materials can be worked and on what can be made from them; restrictions that are less pronounced in lithic raw materials.

Bone is also a much more dynamic material than stone. It is being constantly reformed and replaced during the life of the animal and is subject to the effects of habitual action, trauma, and disease. Age affects an element’s size, but also its inherent strength - bones from aged animals are more highly mineralized than those of younger animals or those in their prime. Changes in composition continue postmortem: the organic collagen decomposes (the rate of this process will be moderated by the environmental conditions of deposition and, as mentioned, may be accelerated by cooking), bone becomes still more mineralized, structurally weakened and prone to the effects of weathering.

Finally, animals may also be treated in different ways according to variability in the way people view them. Ethnographic studies show how some animals may be perceived as being an integral part of a group’s ‘community’ while others may be treated as hostile outsiders; the act of hunting carries overtones of social interaction as much as it is the necessary pursuit of sustenance. There is considerable challenge in retrieving these subtle, often habitual, relationships archaeologically, though it is not impossible for us to draw inferences about them in our interpretations of animal procurement and reduction sequences, including where this leads to the production, maintenance, and discard of osseous technology (Figure 1).



 

html-Link
BB-Link