Www.WorldHistory.Biz
Login *:
Password *:
     Register

 

23-05-2015, 00:24

Recent History and Dissemination

The Portuguese began trading in East Asia during the sixteenth century, as did the Spanish and later the Dutch. Yet the soybean was not known in Europe until the end of the seventeenth century when Engelbert Kaempfer published his Geschichte und Beschreibung von Japan, an account of his visit to that country during the years 1692-4 as a guest of the Dutch East India Company. He wrote of the bean that the Japanese prized and used in so many different ways, and in 1712, he attempted, not very successfully as it turned out, to introduce this miracle plant to Europe. Its products simply did not fit into the various cuisines of the continent, which, in any event, were only then in the process of fully utilizing the relatively new American plants, such as maize and potatoes.

The botanists, however, were thrilled to have a new plant to study and classify, and Carolus Linnaeus, who described the soybean, gave it the name Glycine max. Glycine is the Greek word for “sweet,” and “max” presumably refers to the large nodules on the root system, although other sources suggest that the word max is actually the result of a Portuguese transcription of the Persian name for the plant (Toussaint-Samat 1992: 52).

Because of scientific interest, the soybean was shuttled about the Continent during the eighteenth century for experimental purposes. In 1765, soybean seeds reached the American colonies with a sailor named Samuel Bowen, who was serving aboard an East India Company ship that had just visited China. Bowen did not return to the sea but instead acquired land in Savannah, Georgia, where he planted soybeans and processed his first crop into Chinese vetch, soy sauce, and a starchy substance incorrectly called sago. In North America as in Europe, however, soybean products did not go well with the various cuisines, and the bean remained little more than a curiosity until the twentieth century, despite efforts to reintroduce it.

By the mid-nineteenth century, the soybean was being rapidly disseminated around the globe as trade, imperialism, clipper ships, and then steamships all joined to knit the world more closely together. The expedition of Commodore Matthew Perry that opened Japan to trade in 1853-4 returned to the United States with the “Japan pea” - actually 2 soybean varieties that were subsequently distributed by the U. S. Commissioner of Patents to farmers for planting. But lacking knowledge of and experience with the plant, the recipients were apparently not successful in its cultivation.

During the American Civil War, when shipping was disrupted, soybeans were frequently substituted for coffee, especially by soldiers of the Union army (Crane 1933: 270). Interest also arose in soybean cultivation as a forage plant, and the Patent Office and the new Department of Agriculture (USDA) encouraged experimental planting. The USDA’s role in promoting agricultural research, regulating the industry, and serving as an information generator for farmers proved invaluable to all farmers and certainly to those growing soybeans for the first time (Arntzen and Ritter 1994: 466).

There were 2 stages in processing the soybean plant as a forage crop or hay. The first was to cut the plants just before the leaves turned yellow but after the pods, containing semiripened seeds, had formed, thereby increasing the plants’ protein value. In the second stage, the plants were windrowed and left to dry for a day or two, after which the windrows were raked into bunches and dried for another three or four days. Lastly, the bunches were stacked in barns right side up. The average yield of hay using this method was approximately 4 tons an acre, with a protein content of close to 11 percent.

In harvesting the soybean plant for silage, the process called for cutting the plants earlier - when their seedpods contained premature green seeds.

These were made into bundles of about 25 pounds each, then stored in barns until needed. This method traded some protein content for less leaf loss during harvesting.

Soybean plants, processed by either of these methods, lowered the cost of feeding livestock by replacing the more expensive grass hay and corn. Even a combination of soybean hay or silage and traditional feeds resulted in considerably reduced feed costs and supplied more protein than hay or corn alone could deliver.

At the turn of the twentieth century, the population of the United States was swelling with immigrants, and significant technological advances were spinning out of an ever-accelerating industrial process. An increased demand for food spurred soybean cultivation, and processing was facilitated by electric motors to power grinding equipment that made soybean meal more quickly and efficiently than ever before. Mechanized farm implements encouraged the planting of still more land in soybeans, while lowering the costs of harvesting.

The result was that soybeans produced in the United States became competitive with those grown in East Asia, despite the Asian application of very cheap labor. By 1911, the U. S. industry not only processed soybean meal into cakes for livestock feed but also began to press the beans into oil, as China was already doing. Indeed, the high oil content of the soybean (about 20 percent) was arousing substantial commercial interest.

Previously, a shortage of soybeans in the United States and the predominance of cottonseed oil (then called Wesson Oil after David Wesson, who, in 1899, developed a method for clarifying it) had retarded the development of soybean oil. But in 1915, cottonseed oil became scarce because the U. S. cotton was infested with boll weevils, and this in turn led to the processing of soy oil for human consumption. Cottonseed-processing plants quickly became soybean-processing plants, because the presses and other equipment worked equally well with soybeans. Moreover, a new method was discovered for extracting the oil by first grinding the beans, then soaking them in a solution of benzol, naphtha, and ether, which for every bushel (60 lbs.) of soybeans yielded 10.5 pounds of oil and 48 pounds of meal. Thus, soybean oil was efficiently produced at a time when World War I was creating more demand for oils.

None of these lessons in supply and demand were lost on southern farmers, who began to plant soybeans on land barren because of the boll weevil. The USDA also encouraged soybean cultivation in the states of the Midwest. In 1922, a soybean-processing plant was opened in Decatur, Illinois. To ensure a steady soybean supply, the “Peoria Plan” was developed to guarantee Illinois farmers a base price of $1.35 a bushel (Smith and Circle 1972). In addition, farmers throughout the nation were given an inducement to grow soybeans with the passage, in 1923, of the Smoot-Hawley Tariff, which placed import duties of 2 cents per pound on soybeans, 3 5 cents per pound on soybean oil, and $6.00 per ton on soybean meal.

Soybeans became the nation’s “Cinderella” crop in the 1920s. Demand was high for soybean cakes, which continued to provide farmers with a high-protein, low-cost animal feed. But it was demand for soybean oil that stimulated still more production; soybeans yielded oil valued at 20 cents per pound, or $400.00 per ton, as opposed to meal worth only $20.00 a ton. Research supported by the processing plants helped plant breeders develop new soybean varieties with higher oil contents.

During the 1920s, this oil went into numerous industrial products, among them soaps, paints and varnishes, linoleum, ink, glycerin, explosives, celluloid, and a substitute for rubber. Moreover, the low cost of soybean production stimulated research to discover still more industrial uses. Yet, soybeans remained an underused food resource because of their relatively high saturated fat content, which made the oil solidify, as well as their high percentage of bad-tasting linolenic acid.

It was during the 1930s that research on soybean oil refinement, flavor reversion, and especially hydrogenation ultimately resolved these problems and opened the way for soybeans to be employed in food products (Toussaint-Samat 1993). Increasingly, the oil found its way into shortenings, margarine, salad dressings, and, of course, cooking oils. In fact, during the Great Depression years, soybean oil was well on its way to becoming the most important food oil in the United States, a status it achieved after World War II and never relinquished.

It is interesting to note that during that war, the only survival rations issued to Japanese soldiers had consisted of bags of soy flour, perhaps illustrative of the fact that despite the growing use of soybeans in the United States, they were still an Asian resource. Following the war, soybeans became the world’s most important crop, not because of the Asian influence but because of productivity. Initially, much of the postwar surge of U. S. interest was due to the ability of soybeans to regenerate the soil when planted in rotation with corn (Pepper 1994: 193). During the war, soy margarine had replaced butter on most tables, a use that continued after 1945.

Making a transition to soybeans from a previous concentration on corn, wheat, cotton, or tobacco was scarcely a hardship for farmers because surpluses of these latter crops existed, and because with the passage of the Agriculture Adjustment Act in 1933,restric-tions had been placed on the amount of acreage that could be devoted to them. Meanwhile, the government was promoting soybean products by, among other things, organizing the Regional Soybean Industrial Products Laboratory in 1938.

And once again research found industrial applications for soybeans - this time for using soy protein in the paper industry and for making plastics from oilcake residue in the automobile industry. At the same time, world food requirements in the 1950s increased demand for soy protein for both humans and domesticated animals. During this decade, American farmers responded by producing an annual average of 300 million bushels of soybeans for industrial and food use. In the process, the United States, which prior to World War II had been the world’s biggest importer of fats, became its greatest exporter, accounting for fully 75 percent of the world’s soybean crop.

Because of plant breeding, the soybean - once a subtropical plant - moved north as far as 52 degrees, and soybean fields became familiar sights from Minnesota to the Deep South. Soybean meal processed in the northern states was carried by rail to barges on the Mississippi River that transported it to New Orleans for shipment to world markets (Forrestal 1982).

In addition to the ease of bulk transportation, soybeans lend themselves to handling in many other ways. They can withstand long storage and shipment over long distances; they are easily harvested in an entirely mechanical procedure; and a growing season of only 15 weeks makes it easy to adjust production to world market demand. In short, as one food author has pointed out, supply can be virtually guaranteed, and if there is overproduction, there is no need to destroy the surplus (Toussaint-Samat 1993).

The people of Far Eastern countries receive, on average, about 12 percent of their protein requirements from soybean products. But despite the high protein content of the soybean and the high quality of that protein, attempts to introduce soya to many poor regions of the world, such as India, Africa, and Latin America, have historically met with little success, with southern South. America a notable exception. For example, in Mexico in the 1940s the National Indian Institute handed out soybeans to the impoverished Otomi Indians living in the Mezquital valley. Although the legume flourished in the arid soil, the experiment failed when Otomi women were unable to hand-grind the soybeans to make a decent tortilla (Granberg 1970).

International efforts, however, continue to increase consumption, particularly in the soybean fortification of cereals on which many people rely. All of these cereals - rice, maize, barley, wheat, and rye - yield a protein that is incomplete, meaning that it does not contain all of the essential amino acids. Yet what they lack, soybeans contain, and soybeans are also high in the B vitamins, along with vitamin E, phosphorous, and iron. Thus, in cases where soya is used to supplement other cereals, as in Golden Elbow or Vitalia macaroni, Kupagani biscuits, ProNutro cereal, and Cerealina, the consumer receives a whole protein equal to that provided by meat, fish, and dairy products (Fortified foods 1970).



 

html-Link
BB-Link