Resource procurement throughout the Archaic was heavily slanted toward hunting, particularly the camelids, given the limited range of edible plants found at high elevation, but as always, local resource configurations varied considerably. However, as either logistical or residential mobility brought foraging groups to lower elevations, the use of plants within those subsistence systems increased. The most extreme reliance upon hunting is on the Junin puna, where Rick (1980) shows that vicuna dominated the subsistence quest, and Rick has argued persuasively these formed the basis of an optimal diet. Although gathered plants, most importantly Chenopodium and Opuntia were present at Pachamachay, their quantities were very small, and thus did not contribute substantially to the diet. A similar extreme reliance upon guanaco hunting is seen at Puripica 1, where plant remains are very
Figure 9.2. Necklace composed of cold-hammered gold beads and circular lapis beads found in an adult-cbild secondary burial from Jiskairumoko, ca. 2000 BC. (Mark Aldenderfer)
Scarce. In the high sierra of the Rio Moquegua, the evidence from Asana shows that hunters were also following an optimal diet, where guanaco, then the taruca (Hippocamelus antisensis), were the most highly ranked animal resources. Women apparently gathered wild chenopods at nearby patches.
In contrast, the subsistence systems in the Callejon de Huaylas and Ayacucho Valley, because they did extend into the lower reaches of the high elevation zone, were far more focused upon plants and smaller mammals. In both instances, arguments have been made for relatively early plant horticulture that led to domestication, a process best described as low-level food production (Smith 2001). At Guitarrero Cave, Lynch (1980) describes the
Diet of the Complex II (ca. 9500-6400 BC) foragers as a mix of wild plants and possible cultivars of tubers (Ullucus and Oxalis), beans (Phaseolus vulgaris), and squash (Curcurbita). This very early appearance of cultivars did not stimulate significant population growth. MacNeish et al. (1980) argue for a similar scenario in the Ayacucho Valley; cultivars of gourd, squash, and chenopods were introduced as early as 6600 BC in the Piki phase, although they were of little importance to the diet. Tubers and maize were added to the mix by the end of the Chihua phase (5000-4000 BC), but it is not until the Cachi phase (4000-2200 BC) that a more substantial reliance on plants is observed. A form of vertical complementarity characterizes this adaptation, when in the wet season, groups descended to lower elevations to grow tubers and herd domesticated camelids, while in the dry season, they pastured animals on the high puna and hunted. Population grew substantially during this phase, and at least some of these groups were essentially sedentary.
The question of camelid domestication continues to vex archaeologists working in the Andes. Herding is a form of low-level food production, but does not come to dominate subsistence practice until relatively late in the Archaic. Despite close proximity and long familiarity, the foragers at Pachamachay and nearby Panaulauca did not herd camelids until after 1600 BC (Rick 1980; Rick and Moore 1999: 271-72). This stands in stark contrast to Telarmachay, where Wheeler (1999) argues that the domestication of the vicuna was complete by 4200 BC. Given the proximity of these sites, it is difficult to easily reconcile these scenarios. Herding is believed to have evolved in at least two other areas of the Andes during the Archaic: in the Rio Moquegua drainage, where at Awati phase Asana (30001500 BC) clear evidence of corrals and animal pens are present, and at Puripica 1, where Hesse (1982) argues that guanaco were herded between 3500-2500 BC. In none of these examples, however, do human populations grow rapidly after herding is said to be in place. Further, few models of how the domestication process was initiated have been offered aside from risk buffering. But as Aldenderfer (2006) has argued, it is difficult to see how herding could emerge in the short run as a risk buffering adaptation given the slow growth rates of camelid herds. Instead, a model that examines differences in men’s and women’s provisioning strategies within a costly signaling framework shows how animal husbandry could have been adopted not to buffer risk, but instead to augment and extend men’s status competition as long as women were able to feed their families. The model helps to explain changes in women’s labor allocation, status, and roles across the transition from a forging to a herding subsistence strategy, but remains to be tested in other regions.